THE MEDICAL QUERY LANGUAGE

Daniel J. Shusman, Mary M. Morgan
Rita Zielstorff, R.N., M.S., G. Octo Barnett, M.D.

Laboratory of Computer Science
Massachusetts General Hospital

Boston, Massachusetts

Abstract

The Medical Query Language (MQL) is an
English-like query language with which a user with
little or no training in programming or computer
science can formulate and satisfy inquiries on
data contained in his/her Standard MUMPS database.
To date, major applications of MQL have been in
the areas of quality assurance, medical research,
and practice administration at sites using the
COmputer STored Ambulatory Record (COSTAR)
database system.

Introduction

Because of increasing reliance on database
management systems, it has become important that
ad hoc access to the information be available.
Some reporting packages delivered with systems are
designed to satisfy specific needs (e.g., the
COSTAR Encounter and Status Reports). Others are
designed to accept certain user specification of
content and format (e.g., the COSTAR Report
Generator) . The last alternative is the submittal
of report specifications to a data processing
staff, if one is available. None of these
approaches provide the user with the necessary
flexibility to query a database in an ad hoc
fashion to the depth of detail desired.

MQL was developed in response to this
situation. Users are able to satisfy their
information needs in a very reasonable time
without learning programming, without resorting to
"packaged" report programs, and without diverting

" the data processing staff from its primary work.

MQL provides full data evaluation capability
and complex branching logic without sacrificing
ease of use. Queries may be indefinitely long and
intricate. Such queries can be broken down into a
series of subqueries, each designed to accomplish
some portion of the total problem.

Design

Much research has been carried out in the
development of query languages. Non-medical
systems requiring a formal syntactical and/or
procedural approach to queries (for example,

QuEL!, seQuEL2?, and OBE3) and "natural
language" systems (for example, RENDEZVOUS4,

0195-4210/83/0000/0742801.00 © 1983 IEEE

742

02114

LIFERD, and INTELLECT®) have been
developed.

There are systems designed specifically to
facilitate inquiry of dedicated medical
information databases. Such systems

include CLINFO’, MEDINFO8, MISAR?, and wisarld.

Other, more general query systems are

provided by MEDUS/ALl (a hierarchical
database management system whose query language is

quite symbolic) and MEDQUEL.]-2 (a "natural
language" interface to the QUEL query language).

MQL was designed as a high-level,
English-like query language. It does not require
of the user an in-depth knowledge of the subject
database structure, but imposes a well-defined
source statement syntax and requires a procedural
expression of the question.

MQL uses a source vocabulary supplied by two
dictionaries; the first being a command and data
operator lexicon, the second being the schema - a
description of the data fields contained in the
subject database. Each of these dictionaries
provides descriptive, English-like names for the
items contained in it. Synonyms for the primary
names of these items can be incorporated, thus
tailoring MQL's vocabulary to the terminology of
its users.

The procedural nature of MQL imposes certain
logical constraints on the user. In "natural
language" systems ambiguities in the expression of
a problem (the user's conceptualization) and the
processor's interpretation of the query cannot
always be easily resolved. Arguably, the
procedural characteristic of MQL aids in
developing the protocol and serves to add a
structure to the query which later helps in
identifying and correcting mistakes or in
modifying the query's logic.

The User's Manual and other documentation
provide the user with extensive information about,
and many examples of, the procedural rules. MQL
is therefore available to persons with little or
no computing experience after only a short
familiarization period. The language, however, is
a tool powerful enough to warrant use by
experienced programmers who will find a
significant decrease in time expended developing



certain applications.
Implementation

The MQL language processor is comprised of a
lexical scanner, a parser which results in an
internal, Reverse Polish form of the source
statement, and a 4-segment compiler which

‘generates the appropriate, executable MUMPS
routines using a macro-expansion technique.

As with many query languages, MQL has been
implemented to maintain independence of the
language processor and the subject database
structure. This is accomplished by modeling the
database in a file or "schema" (mentioned above).
Each data field (or "attribute") in the database
has an entry in the schema, as do all functions
such as LENGTH(of text) and NUMERIC VALUE (of
item).

The schema entry for an attribute includes
one internal name, one or more external names, the
data type (date, text, numeric, coded), a print
format, and at least one definition. A definition
represents one relationship of the attribute to
other attributes in the database. Two basic items
comprise a definition. The first is a "dependency
list". A dependency list is a list of attributes
required in the query before the definition can be
selected (as below). The second item in a
. definition is the MUMPS code (macro) which will
extract data from the database for the attribute.
For example, if attribute A is "pointed to" by
attributes B and C, then the schema entry for A
will contain two definitions. The first will have
a dependency list of B and the MUMPS macro
describing access to A given B. The second will
have a dependency list of C and a MUMPS macro
describing A given C.

By having all relationships among all
attributes completely defined, a user can be
released from an in-depth knowledge of the
structure of the underlying database. When
composing a query, a user can assume a particular
relationship between attributes. The language
processor scans each definition of the attribute
to which it is currently pointing in an attempt to
select that one whose dependency list most nearly
matches all attributes which the processor has
already encountered (resolved) in the query. If
the dependency list exactly matches the list of
resolved attributes, the selection process
terminates. If the definition is chosen because
it most closely, but not exactly, matches the list

of resolved attributes, those attributes required
by the definition, but not already resolved, will
be placed on the "resolved" list. The selection
process then terminates for the current attribute.
This is selection-by-inference and permits the
user to assume attribute relationships. 1If no
definition can be chosen, an error message is
displayed and the user must intervene. In such a
case the Attribute Tracking option is available to
point out all existing definitions for the
attribute.

743

As mentioned, MQL is implemented as a
translator which compiles query statements
togenerate one or more executable "object"
routines. The translation process is basically
two-step:

1) Each statsment is parsed for syntax and
lexical validity. Attributes are
verified. Coded values are translated to
their internal forms. Any syntax errors
or unrecognized terms are identified and

the offending statement is presented to
the user for correction.
2) The parsed version is then compiled into a

series of MUMPS routines during which:

1) MUMPS variables are substitut=sd for
attributes and variable names. (Local
variables in MQL ar= bracketed -e.g.,
[X1.)

b) The internal branching logic required
by the "top-down" execution path and by
the use of subqueries (synonymous to
traditional subroutines) is established,
and

c) The MUMPS macro code from the
appropriate dependencies of all
attributes required by the query (2ither
explicitly named by the user in a
statement or inferred by the selection
process above) are concatenated in the
correct logical order and are filed in
the object routine(s).

Once compiled, a query can be executed by
issuing the RUN command which allows immediate or
delayed execution.

User Interaction

MOL is delivered with a query editor which
has display, edit, and erase commands. Using the
editor the query writer enters a source statement
in the form:

<statement number><space><command
keyword><command argument> [<;><command
keyword><command argument>...]

where:

<{statement number> is a source line sequencing
number important to editing and establishing query
logic.

<command keyword> is one of a group of valid MQL
commands of which the following is a partial list:

FOR EACH: introduces an iterative expression
WHEN: introduces a predicate expression
DEFINE: defines a subquery

DO: causes execution of a subquery
LIST: generates an output listing

STORE: collects data in intermediate files
RETRIEVE: recovers STOREd data.



<command argument> is an expression of a syntax
appropriats to the preceding <command keyword>.

<;> is an ootional delimiter allowing the
placenent of more than one logical source
statement on one physical line.

Simple Examples

MQL has been field-tested at many sites using

the COmputer STored Ambulatory Record (COSTAR) 13
database. The following e=xamples are based on the
schema which describes the structure of that
database.

Example I. Identify all patients of Dr.
Smith who have been diagnosad in the last year as
having tuberculosis.

16 FOR EACH PATIENT ; WHEN PRIMARY MD IS SMITH

20 WHEN DATE AFTER TODAY-1 YEAR, DIVISION IS DX,
CODE IS TUBERCULOSIS

3¢ LIST NAME, UNIT NUMBER, DATE, STATUS

The most interesting feature of this query is
the resolution of attributes (i.e., choosing the
appropriate definition of each attribute named by
the user). By the selection-by-inference process
described above, the writer of this query need not
know that the attribute ENCOUNTER was required to
make available DATE nor that the attribute EVENT
need be included to recover STATUS. The user need
only r=alize that only patients of Dr. Smith will
be considered, that only diagnoses in the last
year will be searched, and that only a diagnosis
of tuberculosis in the last year will qualify the
patient for inclusion in the report. This
continual refinement of the data ssarch - each
attribute being subject to the values of all
attributes preceding it in the query - is termed
the CONTEXT under wnich each attribute is assigned
its value(s).

Important to medical research is the
comparison of data over time. MQL has a syntax
named SUBCONTEXT which is expressly designed to
accommodate such investigation.

Example II. Identify all patients of Dr.
Smith who have been diagnosed in the last year as
hypertensive and list all medications prescribed
after the diagnosis.

10
20

37

FOR EACH PATIENT ; WHEN DIVISIONl1 IS DIAGNOSIS
WHEN CODEl IS HYPERTENSION, DATEl AFTER TODAY

- 1 YEAR
WHEN STATUS1 NOT CONTAINS ERROR

49 LIST NAME, UNIT NUMBER, DATEl

50 DO MEDICATIONS ; NEXT PATIENT

60 /

70 DEFINE MEDICATIONS

80 WHEN DIVISION2 IS MEDICATIONS , DATE2 AFTER
DATEL

9¢ LIST CODE2

The suffix "1" attached to DIVISION, CODE,
DATE, AND STATUS "group" these attributes in the
search for a diagnosis of hypertension. The
suffix "2" attached later to DIVISION, CODE, AND

744

DATE serves to allow the search for medications
without contending with the values given to
DIVISION, CODE, and DATE during the hypertension
search. Thus, all EVENTS (selected by inference)
in any one patient record can be searched
independently; first for hypertension (subcontext
1) and then for medications (subcontext 2). When
a medication EVENT is found, and its date (DATE2)
is after the date of diagnosis (DATELl), the
medication is listed, and the next medication
EVENT is sought.

Of interest is line 50 above. The search for
medications is done in a subquery to allow listing
of all medication codes before returning to the
main body of the query. When all medications
meeting the date constraint in line 80 have been
listed, the subquery terminates. The query then
continues with the statement following the
semicolon in line 59. NEXT PATIENT is used to end
the search for hypertension diagnoses in the
current patient record by forcing the query to
move on to the next patient record.

Hardware Enviromment

During the field testing, MQL (Version 1) has
been run under DSM (Versions 1 and 2) and ISM and
on PDP 11, VAX 11/787 and PRIME computers. MQL
should run equally successfully under any Standard
MUMPS system with modifications required to
accommodate such items as non-standard "z"
commands.

MQL (Version 2), as delivered with the schema
describing the current public domain COSTAR,
requires a minimum partition size of 5K bytes, a
minimum 512K bytes of disk space (for the lexicon
and schema), and at least a 200K byte transient
disk space. The size of schemata for other
Standard MUMPS databases will change the disk
raquirements.

Recent Experience

Our experience over the time
(Version 1) has been field-tested has been
encouraging. Users report a high success rate in
formulating and running both medical and
administrative queries. Requests ranging from
calling the COSTAR Status Report from a query to a

scatter plot facility have been received and
honorad.

that MQL

Undar development is a prototypical,
frame-driven user interface which will optionally
replace the current source statement input mode.
This interface represents each entity and
associated attributes in the database as a
distinct frame on which the user can enter value
restrictions. The system releases the user from
the concerns of procedure, context, and
subcontext. However, upon completing the
specifications, the user is presented with the
source statement text equivalent of the frame
specifications. The goal is to train such a user



in the use of the source statement input mode
because it affords a much higher degree of
flexibility.

Summary

The Medical Query Language is a comprehensive
programming system which provides great
flexibility in the retrieval, analysis, and ‘
reporting of information maintained in a Standard
MUMPS database. Replete with full user and
programmer documentation and such capabilities as
cross-tabulation reports, scatter plots, on-line
help, intermediate data storage, and system
maintenance utilities, MQL can satisfy virtually
all reporting needs of its users.

Acknowledgements

This project was supported in part by the
National Center for Health Services Research under
Grant 5 R18 HS 04073.

Raferences

1. Held GD, Stonebraker MR, Wong E. INGRES - A
Relational Data Base System. AFIPS - 1975,
National Computer Conferences Proc., AFIPS Press,
New Jersey, May, 1975.

2. Boyce R, Chamberlin D. SEQUEL - A Structured
English Query Language. Proc. of the 1974
ACM-SIGEIDET Workshop on Data Description, Access,
and Control, Ann Arbor, Michigan, May, 1975.

3. Zloof M. Office-by-Example: A business
language that unifies data and word processing and
electronic mail. IBM Systems Journal, Volume 21,
Number 3, 1982 pp: 272-304.

4. Codd EF. Seven Steps to RENDEZVOUS with the
Casual User. IBM Research Report RJ 1333, IBM San
Jose Research Laboratory, 1974.

5. Hendrix GG, Sacerdoti ED, Sagalowicz D, Slocum
J. Developing a Natural Language Interface to
Complex Data. ACM Transactions on Database
Systems, 1978, 3:106-147.

6. Artificial Intelligence Business Week
Magazine, March 8, 1982, pg: 60.

7. Palley NA, Grover GF, Sibley WL, Hopwood MD.
CLINFO Users Guide: Release One. R-1543-1-NIH,
Rand Corp., April, 1976.

8. Johnson DC, Barnett GO. MEDINFO - A MEDical
INFormation System. Laboratory of Computer
Science, Massachusetts General Hospital, Boston,
1976.

9. Karpinski RHS, Bleich, HL. MISAR: A Miniature
Information Storage and Retrieval System. Comput
Biomed Res, 1971, 4:655-660.

10. Entine SM. Wisconsin Storage and Retrieval
System, A Data Management System for a Clinical
Cancer Center. Proceedings of the Sixth Annual

Symposium of Computer Applications in Medical
Care, Washington, D.C., 1982 pp: 813-814.

11. Goldstein L, Miller PB, Strong RM. MEDUS/A
The MEDIQ Query Language. Technical Report 2,
Version 2.4, Health Systems Project, Harvard
School of Public Health, Boston, May, 1979.

12. Epst=zin MN, Walker DE. Natural Language
Access to a Melanoma Data Base. Proceedings of
the Second Annnual Symposium on Computer
Applications in Medical Care. 1978, pp: 320-325.

13. Beaman PD, Justice NS, Barnett GO. A Medical
Information System and Data Language for
Ambulatory Practices. COMPUTER, 1979, .12:9-17.



